Radiative transport produced by oblique illumination of turbid media with collimated beams.
نویسندگان
چکیده
We examine the general problem of light transport initiated by oblique illumination of a turbid medium with a collimated beam. This situation has direct relevance to the analysis of cloudy atmospheres, terrestrial surfaces, soft condensed matter, and biological tissues. We introduce a solution approach to the equation of radiative transfer that governs this problem, and develop a comprehensive spherical harmonics expansion method utilizing Fourier decomposition (SHEF(N)). The SHEF(N) approach enables the solution of problems lacking azimuthal symmetry and provides both the spatial and directional dependence of the radiance. We also introduce the method of sequential-order smoothing that enables the calculation of accurate solutions from the results of two sequential low-order approximations. We apply the SHEF(N) approach to determine the spatial and angular dependence of both internal and boundary radiances from strongly and weakly scattering turbid media. These solutions are validated using more costly Monte Carlo simulations and reveal important insights regarding the evolution of the radiant field generated by oblique collimated beams spanning ballistic and diffusely scattering regimes.
منابع مشابه
Discrete-ordinates solution of short-pulsed laser transport in two-dimensional turbid media.
The discrete-ordinates method is formulated to solve transient radiative transfer with the incorporation of a transient term in the transfer equation in two-dimensional rectangular enclosures containing absorbing, emitting, and anisotropically scattering media subject to diffuse and/or collimated laser irradiation. The governing equations resulting from the discrete-ordinates discretization of ...
متن کاملPhase-function normalization for accurate analysis of ultrafast collimated radiative transfer.
The scattering of radiation from collimated irradiation is accurately treated via normalization of phase function. This approach is applicable to any numerical method with directional discretization. In this study it is applied to the transient discrete-ordinates method for ultrafast collimated radiative transfer analysis in turbid media. A technique recently developed by the authors, which con...
متن کاملRadiative transport in the diffusion approximation: An extension for highly absorbing media and small source-detector separations
The diffusion approximation to the Boltzmann transport equation is commonly used to analyze data obtained from biomedical optical diagnostic techniques. Unfortunately, this approximation has significant limitations to accurately predict radiative transport in turbid media, which constrains its applicability to highly scattering systems. Here we extend the diffusion approximation in both station...
متن کاملNormalization for Ultrafast Radiative Transfer Analysis with Collimated Irradiation
Normalization of the scattering phase function is applied to the transient discrete ordinates method for ultrafast radiative transfer analysis in a turbid medium subject to a normal collimated incidence. Previously, the authors have developed a normalization technique which accurately conserves both scattered energy and phase function asymmetry factor after directional discretization for the He...
متن کاملAccurate and efficient Monte Carlo solutions to the radiative transport equation in the spatial frequency domain.
We present an approach to solving the radiative transport equation (RTE) for layered media in the spatial frequency domain (SFD) using Monte Carlo (MC) simulations. This is done by obtaining a complex photon weight from analysis of the Fourier transform of the RTE. We also develop a modified shortcut method that enables a single MC simulation to efficiently provide RTE solutions in the SFD for ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 87 6 شماره
صفحات -
تاریخ انتشار 2013